
binfmt_misc - execute it!!!

March 04, 2022

By Aaron Grothe
https://www.grothe.us

https://www.grothe.us

Introduction

The idea for this talk goes back to when I was playing
around with some esoteric languages.

“How do you get your Linux box to run LOLCODE programs
without having to always put the interpreter on the
command line?”

This led me down a rabbit hole and led to this talk :-)

Introduction

Looking at the Linux Source code tree -
https://github.com/torvalds/linux/tree/master/fs

Linux supports 6 type of formats directly

4 are executable types (a.out, elf, elf-fdpic, and flat)

2 are “interesting” to use (scripting and misc)

https://github.com/torvalds/linux/tree/master/fs

Introduction

Executable

● Binfmt_aout.c - a.out format
● Binfmt_elf.c - elf format
● Binfmt_elf_fdpic.c - elf format - position independent

code
● Binfmt_flat.c - flat binaries

“Interesting”

● Binfmt_misc.c
● Binfmt_script.c

Is binfmt_script the answer?

Binfmt_script sounds promising. It is a way to call scripting
options.

However it has some limitations which prevent it from
working for us.

It expects every file to start with a #! - hash-bang and
then the interperter

Why this won’t work for me

An example LOLCode program

HAI 1.2
 CAN HAS STDIO?
 VISIBLE "HAI WORLD!!!1!"
KTHXBYE

By the definition of the language every LOLCode program
starts with “HAI <Version>”. There is no real way to get a
as the first line. The comments of LOLCode are in the
form “BTW comment”, so that doesn’t work.

Why this won’t work for me

Couple of potential workarounds

Modify LOLCode to support #! and change the interpreter
and modify all the programs I’d like to play with (thank you
no.)

Write a helper program with a #! at the top that will call
the LOLcode interpreter and then run it. That sounds
complicated.

Implement a naming convention, name all the files with an
extension like .lol and writing an alias to execute it

Why this Won’t work for me

All of them seem to be a bit of pain, what does this
binfmt_misc do?

From the Wikipedia page for binfmt_misc -
https://en.wikipedia.org/wiki/Binfmt_misc

binfmt_misc (Miscellaneous Binary Format) is a capability of
the Linux kernel which allows arbitrary executable file
formats to be recognized and passed to certain user space
applications, such as emulators and virtual machines

That sounds promising :-)

https://en.wikipedia.org/wiki/Binfmt_misc

Binfmt_misc

Is it enabled on my machine?

grothe@binfmt:~$ findmnt binfmt_misc
TARGET SOURCE FSTYPE OPTIONS
/proc/sys/fs/binfmt_misc binfmt_misc binfmt_m
rw,nosuid,nodev,noexec,relat

It is enabled on my system. Good. There are other ways to
validate it as well, but the above works pretty well.

LOLCode

So we’ll try and run a simple LOLCode program

HAI 1.2
 CAN HAS STDIO?
 VISIBLE "HAI WORLD!!!1!"
KTHXBYE

Save it as hello.lol

LOLCode

We’ve got the program

#1. Lets run it with the lci interpreter

% lci ./hello.lol

Works.

LOLCode

We’ll chmod it to be executable and try and run it and see
what we get

% chmod +x ./hello.lol
% ./hello.lol

BOO!!! - Doesn’t work

LOLCode

So we need to register the format with the binfmt_misc to
know what to do with the executable.

Two ways to do this

#1. By file extension - for .lol files use lci to run them

#2. By magic header - for files that begin with HAI use lci
to run them

LOLCode

Lets add the file extension to binfmt_misc

Once again referring to the wikipedia page

The register file contains lines which define executable
types to be handled. Each line is of the form:

:name:type:offset:magic:mask:interpreter:flags

name is the name of the binary format.

LOLCode

type is either E or M

If it is E, the executable file format is identified by its
filename extension: magic is the file extension to be
associated with the binary format; offset and mask are
ignored.

LOLCode

type is either E or M

If it is M, the format is identified by magic number at an
absolute offset (defaults to 0) in the file and mask is a
bitmask (defaults to all 0xFF) indicating which bits in the
number are significant.
interpreter is a program that is to be run with the matching
file as an argument.

flags (optional) is a string of letters, each controlling a
certain aspect of interpreter invocation:

LOLCode

Example line to run lci for program ending with .lol

echo ':lolcat:E::lol::/usr/local/bin/lci:OC' | sudo tee
/proc/sys/fs/binfmt_misc/register

Now we try and run hello.lol

./hello.lol

SUCCESS!!!!

LOLCode

Where is this registered in the system?

The answer as it is with almost all things Linux is in proc. In
this case it is in the /proc/sys/fs/binfmt_misc folder

cd /proc/sys/fs/binfmt_misc
ls - shows all the formats currently registered with the
system

We see an entry for lolcat - lets go ahead and cat that

cat lolcat

LOLCode

enabled
interpreter /usr/local/bin/lci
flags: OC
extension .lol

LOLCode by Magic

That’s good and all but how would we do it by magic, instead
of relying upon the magic header of the program.

First off we need to deregister our current registration for
lolcat

% echo -1 | sudo tee /proc/sys/fs/binfmt_misc/lolcat

Now let’s verify that isn’t processing the .lol files anymore

% ./hello.lol

LOLCode by Magic

Now we need to register for the lolcat by magic

% echo ':lolcat:M::HAI::/usr/local/bin/lci:' | sudo tee
/proc/sys/fs/binfmt_misc/register

Format looks similar to the extension except for the the ‘M’
instead of ‘E’, the Magic Value, and not having extension
registered

Let’s validate that works

% ./hello.lol

SUCCESS!!!

Next Step - Persistence

So now we’ve proven we can extend the system to support
additional file formats, by either extension of magic
headers.

One problem with this is. While we’ve been able to add
these extensions they won’t persist between reboots. For
that we need to add the file to the system so it persists.

On debian this is under the /var/lib/binfmts folder

Next Step - Persistence

ls /var/lib/binfmts

Contains a bunch of registered entries for the system.

We’ll want to add one for lolcode

vi /var/lib/binfmts/lolcode

Next Step - Persistence

Example File

lolcat
magic
0
HAI

/usr/local/bin/lci

Next Step - Persistence

Is the contents that we were registering with the system
spread out to 10 lines

Lets go ahead and reboot the box and see if the change
persists :-)

SUCCESS!!!

What’s Next?

So we’ve shown how the system can be extended to run just
about anything you want to.

Now we’ll create a sparc64 executable on my x64 system
and run it transparently to the user. This is where the fun
starts.

This will show some of the real power of the binfmt_misc
system.

Creating an executable

First need a program

#include <stdio.h>

int main ()
{
 printf (“hello world\n”);
}

Creating an executable

Compile the program/Run and file the program

grothe@binfmt:~$ gcc a.c -l static

grothe@binfmt:~$./a.out
hello world

grothe@binfmt:~$ file a.out
a.out: ELF 64-bit LSB pie executable, x86-64, version 1
(SYSV), dynamically linked, interpreter
/lib64/ld-linux-x86-64.so.2,
BuildID[sha1]=96d0683b2e66b689e108d112bf022dfd952e
b157, for GNU/Linux 3.2.0, not stripped

Creating a executable

Compile the program/Run and file the program

grothe@binfmt:~$ gcc a.c -static

grothe@binfmt:~$ file a.out
a.out: ELF 64-bit LSB executable, x86-64, version 1
(GNU/Linux), statically linked,
BuildID[sha1]=42eda8241518f40dc462285f12e37e853d78
6ff2, for GNU/Linux 3.2.0, not stripped

grothe@binfmt:~$./a.out
hello world

Creating a Sparc64 executable

Compile the program, file the program

grothe@binfmt:~$ sparc64-linux-gnu-gcc-11 a.c -static

grothe@binfmt:~$ file a.out
a.out: ELF 64-bit MSB executable, SPARC V9, Sun
UltraSPARC1 Extensions Required, relaxed memory
ordering, version 1 (SYSV), statically linked,
BuildID[sha1]=9230a5ea86c14c9bf7d45c450c15a99bdeba0
d72, for GNU/Linux 3.2.0, not stripped

Transparent Execution

and run

grothe@binfmt:~$./a.out
hello world

SUCCESS!!

Transparent Execution

How did we do that?

The answer lies in /proc/sys/fs/binfmt_misc/qemu-sparc64

Time to take a look

% cat /proc/sys/fs/binfmt_misc/qemu-sparc64

Transparent Execution

Contents of the file

enabled
interpreter /usr/libexec/qemu-binfmt/sparc64-binfmt-P
flags: POC
offset 0
magic
7f454c460202010000000000000000000002002b
mask fffffffffffffffcfffffffffffffffffffeffff

So it goes by the magic string for the executable and knows
to pass it to the qemu interpreter

References

A Couple of References I need to point out.

“Using Go as a scripting language in Linux by Cloudflare”

https://blog.cloudflare.com/using-go-as-a-scripting-languag
e-in-linux/

References

“Transparently running binaries from any architecture in
Linux with QEMU and binfmt_misc”

https://ownyourbits.com/2018/06/13/transparently-runnin
g-binaries-from-any-architecture-in-linux-with-qemu-and-bi
nfmt_misc/

References

Imgact_linux a project to add similar functionality to Mac
OS X

https://github.com/georghe-crihan/imgact_linux

Wikipedia page for binfmt_misc

https://en.wikipedia.org/wiki/Binfmt_misc

Summary & Thank You

What’ve shown is that you can extend Linux to do almost
anything you want to with binary programs. The ability of
binfmt_misc allows you to call a userspace program to
handle almost anything.

I’m hoping a few of you after this talk will go “Hey. What
about this?”

Thanks for Listening,

Questions???

